

TOPOLOGY - III, SOLUTION SHEET 5

Exercise 1. (1) By definition, if X is contractible then there exists a point $c \in X$ such that the identity map $Id : X \rightarrow X$ is homotopy equivalent to the constant map $c : X \rightarrow X, x \mapsto c$. Then by part (1) of exercise 3, Sheet 4, it follows that $H_i(X) = H_i(c)$ for all i . In particular, $H_i(X) = 0$ for all $i > 0$.

- (2) Let $q : X \times [0, 1] \rightarrow CX$ be the quotient map. Then one observes that $h : CX \times [0, 1] \rightarrow CX, (q(x, i), t) \mapsto q(x, (1-t)i)$ defines a homotopy between the identity map on CX and the constant map on CX which maps every point to the vertex of the cone.
- (3) It follows from the long exact sequence of relative homology that $H_0(X, A) = 0$ if and only if the map $i_* : H_0(A) \rightarrow H_0(X)$ induced by the inclusion map $A \xhookrightarrow{i} X$ is surjective. One observes that the homomorphism $i_* : H_0(A) \rightarrow H_0(X)$ is given by the assignment $[a] \mapsto [a]$. That is i_* sends the class of a point in A to its class in X . Recall that $H_0(Y)$ for a space Y can be interpreted as the free abelian group on all points of Y up to the identification that two points are considered equal if there is a path between them. Therefore i_* is surjective if and only if every path-connected component of X contains a point of A .

Exercise 2. (1) We have that r_*i_* is the identity homomorphism on $H_n(A)$ for all n . This shows that i_* is injective, since it has a left-inverse.
(2) Let i be the usual embedding of S^1 in \mathbb{R}^2 , then $i_* : H_1(S^1) \rightarrow H_1(\mathbb{R}^2)$ is clearly not injective since $H_1(S^1) = \mathbb{Z}$ but $H_1(\mathbb{R}^2) = 0$.

Exercise 3. (1) Let us assume that A is a collection of k points. We obtain the long exact sequence in relative homology:

$$0 \rightarrow H_2(A) \rightarrow H_2(S^2) \rightarrow H_2(S^2, A) \rightarrow H_1(A) \rightarrow H_1(S^2) \rightarrow H_1(S^2, A) \rightarrow H_0(A) \rightarrow H_0(S^2) \rightarrow H_0(S^2, A) \rightarrow 0.$$

By part (3) of exercise 1, we have that $H_0(S^2, A) = 0$. Since $H_2(A) = H_1(A) = 0$, we also obtain that $H_2(S^2, A) \cong H_2(S^2) \cong \mathbb{Z}$. Finally the vanishing of $H_1(S^2)$ gives a short exact sequence

$$0 \rightarrow H_1(S^2, A) \rightarrow H_0(A) \rightarrow H_0(S^2) \rightarrow 0.$$

Since $H_0(A) \cong \mathbb{Z}^k$ and $H_0(S^2) \cong \mathbb{Z}$, it follows that $H_1(S^2, A) \cong \mathbb{Z}^{k-1}$.

(2) Using the long exact sequence in relative homology, the fact that $\partial D^2 = S^1$ and that D^2 is contractible, it follows that $H_2(D^2, \partial D^2) = \mathbb{Z}$, $H_1(D^2, \partial D^2) = 0$ and that $H_0(D^2, \partial D^2) = 0$.

(3) Let $|A| = k$. Similar to part (1), we obtain the long exact sequence in relative homology:

$$0 \rightarrow H_2(A) \rightarrow H_2(T^2) \rightarrow H_2(T^2, A) \rightarrow H_1(A) \rightarrow H_1(T^2) \rightarrow H_1(T^2, A) \rightarrow H_0(A) \rightarrow H_0(T^2) \rightarrow H_0(T^2, A) \rightarrow 0.$$

By part (3) of exercise 1, we have that $H_0(T^2, A) = 0$. Also we have $H_2(T^2, A) \cong H_2(T^2) \cong \mathbb{Z}$. Now, the kernel of $H_0(A) \rightarrow H_0(T^2)$ is isomorphic to \mathbb{Z}^{k-1} . Hence we have a short exact sequence $0 \rightarrow H_1(T^2) \rightarrow H_1(T^2, A) \rightarrow \mathbb{Z}^{k-1} \rightarrow 0$. Since $H_1(T^2) \cong \mathbb{Z}^2$, we obtain that $H_1(T^2, A) \cong \mathbb{Z}^{k+1}$.

(4) First note that under the usual identifications of $H_1(S^1)$ and $H_1(T^2)$ with \mathbb{Z} and \mathbb{Z}^2 respectively we have that $i_* : \mathbb{Z} \rightarrow \mathbb{Z}^2$ is that map $c \mapsto (c, c)$. Now, we have the following long exact sequence in homology:

$$0 \rightarrow H_2(S^1) \rightarrow H_2(T^2) \rightarrow H_2(T^2, S^1) \rightarrow H_1(S^1) \xrightarrow{i_*} H_1(T^2) \rightarrow H_1(T^2, S^1) \rightarrow H_0(S^1) \rightarrow H_0(T^2) \rightarrow H_0(T^2, S^1)$$

As before we have $H_0(T^2, S^1) = 0$. Since $H_0(S^1) = \mathbb{Z}$, we also see that the map $H_0(S^1) \rightarrow H_0(T^2)$ is an isomorphism. Since i_* is injective and $H_2(T^2) \cong \mathbb{Z}$, we obtain that $H_2(T^2, S^1) \cong \mathbb{Z}$. Finally we observe that $H_2(T^2, S^1)$ is the cokernel of i_* and hence isomorphic to \mathbb{Z} . The same computations of $H_*(T^2, S^1)$ also hold true for the other embedding of S^1 in T^2 .

(5) By 1.(3) we obtain $H_0(\mathbb{R}, \mathbb{Q}) = 0$. Note that \mathbb{R} is contractible and $H_i(\mathbb{Q}) = 0$ for all $i > 0$. One can see this by using the fact that \mathbb{Q} is totally disconnected. It follows at once from the long exact sequence of relative homology that $H_1(\mathbb{R}, \mathbb{Q}) \cong \mathbb{Z}^{\mathbb{Q}}$ and $H_i(\mathbb{R}, \mathbb{Q}) = 0$ for $i \neq 1$.

Exercise 4. Please refer to the proof of Theorem 2.10 on page 112 in [Hatcher's book](#).